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Of the various integral equations that have been derived 10 calculate the radial distribution
function of classical fluids the Percus-Yerick (PY), Hypernetted chain equation (HNC) and
the Mean spherical model (MSM) have been considered. The structure and thermodynamic
properties were calculated for triangular well potential and the results are compared with the
Monte Carlo simulation results. Also results for thermodynamic properties using the optimised
cluster theory (OCT) of Andersen et al. were presented.

INTRODUCTION

In this paper we study the applicability of current liquid state theories for
the case of the triangular well fluid (TW), in which molecules interact with
the pair potential

0,r < a

ur) =4 1 (r 1),6<r<no (1)

n—-D\ne
0,r > no

and we consider the case n = 2 throughout since the Monte Carlo simula-
tion results are available for such a case. Though triangular well fluid is a
model fluid, it is particularly appropriate as a testing ground for theories
because it seems to amplify differences in various theories much more than
for other models. Also for appropriately chosen parameters the TW fluid
gives qualitative agreement with the properties of real simple fluids such as
argon. The TW fluid is also of some interest because of the greater statistical
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accuracy which can be expected for data resuiting from numerical integra-
tions.2 Ausloos et al.® recently applied the Zwanzig’s perturbation theory*
for triangular well fluid. Smith et al.> have generated semi-exact results for
thermodynamic properties for the triangular well fluid using Barker-
Henderson perturbation theory® and Tago’ reported the fourth virial
coeflicients for TW fluid.

INTEGRAL EQUATIONS

The direct correlation function ¢(r) is defined by the Ornstein-Zernike (OZ)
relation

h(ris) = c(rz) + p f h(r13)e(r35)drs @

Here p(=N/V) is the number density, h(r) is the total correlation function
defined in terms of the radial distribution function g(r) by

h(r) = g(r) — 1 €)

The OZ equation is a definition of ¢(r) which must be supplemented if an
equation which can be solved is to be obtained. The percus-Yevick (PY)
approximation® supplements the closure approximation

«(r) = f(r)y(r) “

where
fr)=e P —1 &)
¥(r) = g(r) exp[Bu(r)] (6)

B = 1/kg T, T is the temperature and kg is the Boltzmann constant.
The hypernetted chain (HNC) approximation®!! relating c(r) and g(r) is
given by
c(r) = f(r)y(r) + y(r) =1 — In y(r) (7

The mean spherical model (MSM)!? is based on the assumption
c(r)=fr)yr), r<a
= —Pu(r), r>c ®)

where o is such that u(c) = 0 and u(r) >0 for r < 6. The MSM and PY

approximations are identical for the hard sphere system (i.e. when f§ = 0).
Recently, Anderson and Chandler!® proposed an approximation known

as the optimised cluster theory of tiquids. The Mayer cluster series for the
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Helmholtz free energy and the pair correlations functions are transformed
using topological reductions suggested by Morita and Hiroike'* to more
compact forms involving a renormalised potential. In this application the
potential is divided into

u(r) = uo(r) + uy(r) ®
where uy(r) is the reference part of the potential given by
u(r) =, r<a (10)
0,r>c

and u,(r) is the attractive perturbation. Defining

¢(r) = —Buy(r) (11)
and its Fourier transform
k) = f dr exp(—ik - r)é(r) 12)
the renormalised potential ¢ (r) is given by
1 F3k)b(k)
2e.(r =—~—Jdkex ik-r o 13
prel) = Gy | Ak X0 D G 0d0) (9
where the hypervertex Fq(r,, r,) is defined by
Fo(ry, 15) = pd(ry, 1y) + p2ho(ry, 1)) (14)

Here 4(ry, r,) is the Dirac delta function and hg(r,, r,) is the total correlation
function for the reference system. Anderson et al. proposed the linearised
exponential approximation for the radial distribution function given by

g(r) = go(M[1 + c1(r)] (15)
and the exponential approximation (EXP) given by
g(r) = go(r)e” (16)

where g4(r) is the r.d.f. for the reference system.

THERMODYNAMIC PROPERTIES

Once the RDF is obtained, thermodynamic properties can be obtained from
the energy equation

U 3 2xpf R
NET =3 i) u0endr )
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and from the pressure equation

py 2np f 5 du
A 18
N, T - Tt )T a9 (18)
and the compressibility equation
B(-ai)) =1~—4dnp J.c(r)rz dr 19)
/)

An exact RDF will lead to consistent results for the thermodynamics pro-
perties as calculated from the pressure, energy and the compressibility
equations of state and an approximate RDF destroy the self consistency.

CALCULATIONS INTEGRAL EQUATIONS

The PY, HNC and MSM integral equations were written in the r-space by
writing the volume integral in the OZ equation in terms of bipolar coordinates
and the resulting equation is solved by an iterative technique using a grid
size of 0.05¢. Convergence was enhanced by using Broyle’s mixing parameter
using the formula

YR = (1= Y + ¥ (20)

where Y%, and Y, are the nth input and output and « is the mixing parameter.
The iterations were terminated when

|Y"*1 — Y| <0.001

the resulting g(r) and c(r) were used in the pressure, energy and compres-
sibility equation and all the integrals were programmed using Simpsons
rule.

CALCULATIONS FOR OCT

Since the properties of the fluid of molecules interacting through the poten-
tial (9) must be independent of the value of the perturbation u,(r) for the
physically impossible interparticle separations r < o, it is equally clear that
the LEXP for the free energy and the pair distribution function depend on
the value of the perturbation inside the hard core, since the renormalized
potential is a functional of ¢(r). This unphysical behaviour was eliminated
by choosing u,(r) in such a way that

c(r)=0,r<o @1
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This implies that

oVa,. 1
; dj’(;‘;g — 5 preutr) =0 22)

where a,;,, is the ring contributions to the free energy and is given by

—1 . R
Geing = 5573 fdk{F o(k)(k) + W[l — Fo(k)p(ky1} (23)
In order to solve the variational problem given by Eq. (22) we assumed a trial
solution of the form

3 r\"
o(r) = Za"(l—;), r<g

n=0
- 40 r> o @4

and minimised Va,;,, with respect to the coefficients ay, a,, a,, a; by Newton-
Raphson method. The hard sphere radial distribution functions were cal-
culated from the PY theory using Verlet-Weis method.!®

The radial distribution functions obtained from the PY, HNC and MSM
theories are compared in Figures 1-4, with the Monte Carlo results. In
Figures 5 and 6 the direct correlation functions were plotted. In Table I

2.0
T°:50
V/Vo:g.o
— MSM
151 “TT PY
= s ) MC Simulation
& ¢ == HNC
1.0F

1.0 15 20 25 3.0
r/o'

FIGURE 1 Radial distribution function for the TW fluid at T* =50 and v/v, = 8.0
(Vo = NU}/\/?)-
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1.0 1.5 20 2.5 30
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FIGURE 2 Same as Figure 1 but for T* = 1.5 and v/v, = 8.0.

2.4

‘ T':15

r\ V/VO =3.0
20\, — MSM

| --- PY

T

1.5

1.0

T

° MC Simulation

15 2.0 25 3.0

FIGURE 3 Same as Figure 1 but for T* = 1.5 and v/vy = 3.0.
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Direct correlation function for the TW fluid at T* = 1.5 and v/v, = 8.0.
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FIGURE 6 Same as Figure 5 but for T* = 1.5 and /vy = 2.0.

the thermodynamic properties obtained from the PY, HNC and MSM
theories were compared with the simulation results, In Tables II-1V thermo-
dynamic data obtained from the OCT is reported for various thermodynamic
states. Results for the energy and pressure obtained from OCT is compared
with simulation results in Figures 7-9.

A comparison of Figures 1-4 reveals that the MSM g(r) is too low near the
contact. This feature of MSM has been observed for other hard core fluids
like the square well fluid by Tago and Swamy.!® The PY and HNC results
compare well with the simulation results. The MSM and PY pressures cal-
culated from the pressure Eq. (17) are not so good. It is sensitive to the error
of g(r) at the hard core. The energy is not due to the details of g(r) in con-
trast with the pressure. The PY energy is better than the MSM energy. The
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FIGURE 7 Equation of state of TW fluid. The points O, A, ll and @ give the MC simulation

results and the solid curves are isotherms labelled with the appropriate value of 7%
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FIGURE 8 Internal energy of a TW fluid. The curves and points have the same meaning as

in Figure 7.
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pE

FIGURE 9 Equation of state of TW fluid. The points give the MC simulation results. The
curves are isochores labelled with the appropriate value of v/v,.

results for the isothermal compressibility calculated from the compressibility
relation are contained in Table 1. As there exists no simulation results, no
quantitative test can be made.

The direct correlation function ¢(r) at two thermodynamic states are
shown in Figures 5 and 6. In Figure 7 the pressure calculated from the pres-
sure equation using OCT with the LEXP approximation is compared with
the simulation results. The agreement is excellent. Similar conclusions can be
drawn from the values of (u) displayed in Figure 8.

CONCLUSION

The structure and thermodynamic properties of TW fluid was calculated
using various integral equations and the optimised cluster theory. It has
been shown that the OCT generates quantitatively the structure and thermo-
dynamic properties of a hard core fluid, e.g. the TW fluid. Of the various
integral equations the MSM fails and the PY and HNC equations give
qualitatively better results.
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